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Abstract

Traditionally, Fourier Transforms have been utilized for performing signal analysis and

representation. But although it is straightforward to reconstruct a signal from its Fourier

transform, no local description of the signal is included in its Fourier representation. To alleviate

this problem, Windowed Fourier transforms and then Wavelet transforms have been introduced,

and it has been proven that wavelets give a better localization than traditional Fourier transforms,

as well as a better division of the time- or space-frequency plane than Windowed Fourier

transforms. Because of these properties and after the development of several fast algorithms for

computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis

(MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal

analysis problems, especially real-life problems, in which speed is critical. In this paper we

present and compare efficient wavelet decomposition algorithms on different parallel

architectures. We report and analyze experimental measurements, using NASA remotely sensed

images. Results show that our algorithms achieve significant performance gains on current high-

performance parallel systems, and meet scientific applications and multimedia requirements. The

extensive performance measurements collected over a number of high-performance computer

systems have revealed important architectural characteristics of these systems, in relation to the

processing demands of the wavelet decomposition of digital images.
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1. Introduction

Traditionally, Fourier transforms have been utilized for signal analysis and reconstruction.

But although it is straightforward to reconstruct a signal from its Fourier transform, no local

description of the signal is included in its Fourier representation, as shown in equation (1):

F(x)(f) = f x(t) e -if' dt (1)

To alleviate this problem, Windowed Fourier Transforms, and as a special case Gabor

Transforms [1], have been introduced. The signal is analyzed after filtering by a fixed window

function, so these transforms have the localization property that traditional Fourier transforms do

not have. See equation (2) where a window function g(t) is used:

WF(x)(f,'_) = f x(t) g(t-'r) e -ift dt (2)

However, since the envelope of the signal is the same for all frequencies, a windowed Fourier

transform uniformly Samples the time- or space-frequency plane. Depending on the application,

for example speech analysis or image feature extraction, it can be of interest to have a more

flexible division of the time- or space-frequency plane to provide more "time- or space-details"

at high frequencies. Wavelet transforms provide this type of sampling by filtering the signal with

the translations and dilations of a basic function, called the "mother wavelet", equation (3).

Wav(x)(a,b) = lallnJ" x(t) gt(t-.._bb) dt
a

(3)
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where _(t) is the "Mother Wavelet," and a and b are the scale and translation variables,

respectively.

In the image processing domain, wavelet transforms have been proven to be very useful for

such tasks as image compression and reconstruction, feature extraction, and image registration

[1-6]. Furthermore, fast algorithms and particularly the multi-resolution sclaeme developed by

Mallat [4,7,8] have increased the importance of wavelets for on-line processing of imagery data.

The speed of such processing is especially important for managing remotely sensed data whose

already massive amounts is growing even bigger with such programs as NASA's Earth

Observing System (EOS).

In this study, we are investigating the parallel implementation and performance of the Mallat

MRA algorithm on parallel architectures. Coarse-grain algorithm mappings for the Intel Paragon,

the Cray T3D, the HP/Convex SPP-1000, and the Beowulf/Hrothgar network of PC's are

developed. Extensive measurements are collected, analyzed and compared with the fine-grain

MasPar experimental results [9-11]. Test image data from NASA's Landsat-Thematic Mapper

(TM) and various filter sizes were used. The results will show that the parallel algorithms can

achieve orders of magnitude performance improvement on contemporary high-performance

computing systems, when compared to typical desktop workstations. Such performance can
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satisfy real-time image processing needed for large scientific databases, such as the NASA's

Earth Science Data and Information System (ESDIS) project and all multimedia applications.

This paper is organized as follows. Section 2 provides an overview of the discrete wavelet

transform and the Mallat algorithm. Section 3 provides an overview to the massively parallel

architectures that were used in this study, which includes MasPar, Cray T3D, Intel Paragon,

HP/Convex SPP-1000, and the Hrothgar/Beowulf network of PC's. Section 4 discusses the

algorithms and the implementation issues on different high-performance computing

architectures. Scalability and timing results are presented and discussed in section 5. Conclusions

are given in section 6.

2. Multi-Resolution Wavelet Decomposition

As described in section 1, a wavelet transform is defined by the translations and the dilations

of a basic function called the "Mother Wavelet." Depending on the application, continuous or

discrete transforms may be utilized. Special conditions are imposed on Mother Wavelets that

lead to orthonormal bases of wavelets, which are particularly useful for data reconstruction [3].

In this paper, we will only consider wavelet transforms for the processing and analysis of 2-D

image data. Thus, discussion will focus on discrete wavelets, and particularly those forming

orthonormal bases.



According to Mallat [4], an orthonormhl basis of wavelets can be defined by a scaling

function and its corresponding conjugate filter L. In this case, the wavelet decomposition of an

image is similar to a quadrature mirror filter decomposition with the low-pass filter L and its

mirror high-pass filter H. This decomposition of a 2-D image, also called "Multi-Resolution

Analysis" (MRA) assumes that the multi-resolution representation of the image space is

"separable." This means that the two axes x and y can be treated independently in the

decomposition as well as in the reconstruction. This decomposition is summarized in Figure 1.
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Multi-Resolution Wavelet Decomposition
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The input image is first convolved along the rows by the two filters L and H, and the horizontal

dimension of these two intermediate results is decimated by 2. Each of the two "column-decimated"

images, Lk+j and Hk+_, is then convolved along the columns by the two filters L and H and decimated

along the rows by two. This decomposition results into four images, LLk+_, LHk+l, HLk+i and HHk.. Each

of these images, such as the low/low image, LLk+_, may be taken as the new input to perform the next

level of decomposition and so on.

The MRA decomposition algorithm can be described by the following sequence of steps:

(0) Start from the image Io, level 0 of the multi-resolution sequence (k=0).

(1) High-Pass and low-pass filtering of image rows at level k.

(2) Decimate by 2 the number of columns: results in and Lk+_ and Hk+_.

(3) High-pass and low-pass filtering of image columns at level k.

(4) Decimate by 2 the number of columns: results in L_+t, LHk+_, HLk+_ and HHk+_. The

low/low result, LLk+ I can be renamed Ik+_, since it corresponds to the compression of the

original image at level k+l.

(5) Set k to the next level of decomposition, k+l, and continue the iterative process from (1) to

(4) until the desired level of decomposition is achieved.



Wavelet reconstruction is obtained by a similar reverse process,which is graphically

describedin Figure2, whereL* andH* areconjugatefilters associatedto thepreviouslydefined

filters, L andH.
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Multi-Resolution Wavelet Reconstruction

3. Overview of the Parallel Systems

Experimental measurements for this work were obtained using the NASA Earth and Space

Science (ESS) high-performance computing testbeds. In particular, the NASA HP/Convex SPP-



1000, MasParMP-2, Hrothgar-Beowulf,andtheJet PropulsionsLab (JPL) Intel Paragonand

CrayT3D wereused. A brief descriptionof thesesystemsis givenbelow.

3.1 The MasPar

MasPar machines included two families of massively parallel-processor computers, namely

the MP-1 and the MP-2. Both systems are essentially similar, except that the second generation

(MP-2) uses 32-bit RISC processors instead of the 4-bit processors used in MP-1. The MasPar

MP-1 (MP-2) is a fine-grained, massively parallel computer with Single Instruction Multiple

Data (SIMD) architecture. The MasPar has up to 16,384 parallel processing elements (PEs)

arranged in a 128x128 array, operating under the control of a central array control unit (ACU).

The processors are interconnected via the X-net into a 2-D mesh with diagonal and toroidaI

connections. In addition a multistage interconnection network, called the global router (GR),

uses circuit switching for fast point-to-point and permutation transactions between distant

processors. A data broadcasting facility is also provided between the ACU and the PEs. Every

4x4 grid of PEs constitutes a cluster which shares a serial connection into the global router. For

more information on the MasPar, the reader can consult more specialized MasPar references

[12,13].
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3.2 The lntel Paragon

The Paragon has a total of sixty-four nodes organized into a 16x4 mesh, of which fifty-four are

compute nodes and eight are service nodes. Each node, an Intel GP node, is essentially a separate

computer with one compute and one communication i860 processors. Each of the 56 compute nodes

has 32 MBytes of memory. The service nodes include: four I/O nodes with 32 MBytes memory and

a 4.8 Gbyte RAID each, one HIPPI node with 32 MBytes memory, one User Service node with 32

MBytes memory, and one boot node with 32 MBytes memory and a 4.8 Gbyte RAID. The peak

performance (using 56 nodes) is 5.6 GFlops in single precision with an aggregate memory space of

1.8 GBytes and aggregate online disk capacity in excess of 20 GBytes. The programs can be

developed in C or FORTRAN which are supported by NX library routines for communication and

synchronization purposes.

3.3 The Cray T3D

The Cray T3D is a MIMD system with physically distributed but globally addressed memory. The

JPL T3D has a Cray Y-MP as its host system and currently consists of 256 processors each with two

MWords (16 MB) of DRAM memory. About 25% of the memory is required by the UNICOS

microkernel, therefore, the users can expect to have 12 MB of memory for program and data. Each PE

is a 64-bit DEC Alpha microprocessor with a frequency of 150 MHz capable of achieving 150

MFLOPS. The memory interface between the processor and the local memory extends the local
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addressspaceto a global addressspace.The Alpha processorhasa direct-mappeddata cache

organizedinto 256 lines with 32 bytesper line. Programscaninvalidatethe localcacheasneededto

maintain the coherency.Also, remote data entering a processor's local memory can invalidate the

corresponding cache line. The system is space-shared through partitions, where the numbers of

processors are powers of two. A node consists of two processors sharing a network support logic. All

processors are connected by a bi-directional 3-D torus system interconnect network. This topology

ensures short connection paths and high bisectional bandwidth. Channels between nodes are two bytes

wide and the peak interprocessor communication rate is 300 MB/sec in every direction through the

torus. The system software includes FORTRAN (a superset of FORTRAN 77 including many

FORTRAN 90 array syntax statements), C, and C++ compilers as well as tools for application

performance analysis and parallel code debugging. The PVM is currently supported as are some lower

level Cray libraries for passing data and messages among processors.

3. 4 The HP/Convex Exemplar SPP-1000

The HP/Convex SPP-1000 is a distributed-shared-memory multiprocessor. Every eight processors

form a hypernode, which is a symmetric multiprocessor. The eight processors of a hypernode are

made from four blocks, each with two PA-RISC 7100 processors with 100 MHz clock rate and a 100

MFLOPS peak processing power, 1 MB cache, and 64 MB of RAM. Blocks of a hypernode are

interconnected via a 5x5 cross-bar, Hypernodes are, in turn, connected via a scalable coherent
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interface (SCI) ring to form a multicomputer.The NASA GSFCSPP-1000has two hypernodes

containinga total of sixteenprocessors.The Exemplarsupportsboth the virtual memory andthe

message-passingparadigms.Sharedmemoryis supportedvia parallelizingcompilersthat canexploit

parallel directives augmentedby the user to control the parallel execution.HP/Convex provides

compilersfor ANSI C, FORTRAN 77, andC++. Message-passingsupportincludesboth PVM and

MPI.

3.5The NASA/GSFC Hrothgar Beowulf-Cluster

Beowulf is an architecture for networks of workstations developed at NASA GSFC. The Beowulf

philosophy is to use most cost efficient commodity off the shelf (COTS) products for constructing

such systems. A Beowulf is basically a pile of PC's interconnected via some LAN technology and

running a version of LINUX, a free UNIX, and parallel programming environment such as PVM or

MPI. Hrothgar is the specific Beowulf cluster used in this work. The NASA GSFC Hrothgar contains

sixteen 100 MHz Pentium processors, each with 16 MB of RAM and 512K cache. The system is

interconnected via two fast Eathernet channels, 100 Mbps each. Communication is distributed

equally across the channels to provide an aggregate bandwidth of 200 Mbps. LINUX is the

underlying operating system and most parallel applications on the system use PVM, although MPI is

also supported. See [14,15] for more details on Beowulf clusters.

13



4. Parallel Implementations

In order to allow accurate measurements of communications, the message-passing

programming model was used in all cases, except for the MasPar which used MPL (a data-

parallel version of the ANSI C). All message-passing implementations were developed in C and

augmented with the appropriate message-passing communication calls. The applications used the

"single program, multiple data" (SPMD) programming model. In this model, the same program

runs on each node in the application, but each node works on a part of the data. However,

because each node is an independent computer, one can also use other programming models.

One example is the "manager-worker" model, in which a "manager" program starts up several

"worker" programs on other nodes, then gathers and interprets their results.

According to the previous descriptions, the wavelet algorithm can be defined as a

combination of successive filterings and decimations. Our parallel implementation will

concentrate on these two operations, focusing on minimizing the communication costs by

reducing the number of communication transactions and the distance between the

communicating processors.

4.1 The Fine-Grain SIMD Implementations

On the MasPar MP-2, two algorithms were used, referred to as systolic and systolic with

dilution; see [9,10] for details. Both of them store the filter in the control unit and broadcast the
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filter elementsfrom last to first. After eachbroadcast,thealgorithmrequiresone multiply and

accumulate,followed by shifting thepartial result to the left. The algorithmrepeatsthis stepfor

asmany times asthe sizeof the filter with partial resultsbeingaccumulatedand built up in a

systolic fashion. By the last step,each(logical) processorendsup with one pixel result.The

difference betweenthe two algorithms is in the way decimation is handled.In the systolic

algorithm,decimationis accomplishedusingtheglobalrouter.In thedilution algorithm, thefilter

is dilutedor stretchedto bealignedwith therelevantpixels,thusavoidingthe useof theMasPar

globalrouter.

When theimagedatais largerthanthenumberof thePE's in themachine,a "virtualization"

of thePE arrayhasto bedefined.Two virtualizationmethodswereconsidered,"cut andstack"

and hierarchical.The hierarchicalgave thebest resultssinceit improvesdata locality for the

underlyingcomputations[9]. In the"cut andstack" virtualizationscheme,the imageis cut into

squarescorrespondingto thesizeof thebasicparallelarray.For example,if thesizeof the image

is 512x512, we need to stack sixteen layers of image data in the 128x128 parallel array. The

hierarchical virtualization divides up the image into sub-images and allocates each sub-image to

a different physical processor. The MasPar systolic algorithm was shown to be processor optimal

[10].
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4.2 The Coarse-Grain MIMD Implementations

Reducing the number of transactions was done by distributing stripes of the image rather than

blocks limiting exchange of information to one neighbor instead of two, which would have been

needed should image data be distributed by blocks, see figure 3. Secondly, as seen in figure 4,

those slices are distributed in a snake-like fashion in order to limit communications to immediate

neighbors only. Those communications transactions are needed at the end of each decomposition

level in order to build a guard zone around the processor local data from the decomposition

results in its neighbors before the next decomposition level starts. Using a striped data

decomposition, such zone is only needed for column filtering. In block data decomposition,

guard zones need to be established for both the row and column filtering. The depth of the zone

is in the order of the filter length. Guard zone data are brought in from the east neighbor for row

filtering, and from the south neighbor for the column filter.

Block Strioed

• g

• Q

I D •

Figure 3

Reducing Communication Transactions Via Striping

The implementations on the Cray T3D, the HP/Convex SPP-1000, and the Hrothgar

machines also used a striped approach to minimize the number of communications transaction.
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Reducingthenumberof communicationstransactionsworkedbetterfor theusedpracticalfilter

(guardzone)sizes.This is dueto thewormholeroutingwhich amortizestheinitial latencycost

over largermessagesdueto its pipelinedoperation.

Allocating

P0

P1
P2
P3

P7
P6
D_

image sub-domains to
Processors

P_) PI(

P4 P5

0---(

JPL ESS Paragon

Figure 4

Reducing the Paragon Communications Distances Via a Snake-Like Domain Decomposition

No attempt was made to reduce the communication distances on the T3D. Communication

distance is mainly fixed on the SPP-1000 and the Hrothgar due to their cross-bar and the bus

architectures, respectively.

5. Experimental Results

Wavelet decomposition of a 512x512 Landsat-Thematic Mapper image of the Pacific

Northwest area was used for our experiments (see figure 5). The experimental results for the
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waveletdecompositionof this imagearegivenwhenfilters of sizes8, 4, and2 areusedalong

with 1,2, and4 levelsof decompositions,respectively.It shouldbenotedthat asthenumberof

decompositionlevels increases,morecommunicationis required. Increasingthe filter size,

however,increasesthecomputationaldominancein thisproblem.

Figure 5

Test Data Included A Landsat Thematic Mapper Image and Different Size Filters

5.1 Intei Paragon Scalability Measurements

The Paragon scaling results are shown in figures 6 and 7. Scalability up to 4 processors was

obtained using the straight forward data distribution, where no arrangement was made to limit

communication to nearest neighbors. The reason for the number 4 can be seen from figure 4.

Beyond 4 processors, processors at the right edge of the network attempt to communicate with

those in the leftmost column of the following row. Due to dimension routing, messages in this

case travel along the horizontal dimension first before moving along the vertical, which gives
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riseto communicationconflicts.For thesmallamountof computationsin thewaveletoperations,

thiscreatesanexcessivecommunicationsoverheadthatpreventsscalability.

The snake-likedatadistribution on the otherhanddoesnot createtheseconflicts and limit

communicationto a distanceof one,thuscreatingtheopportunityfor relativelybetterscalability.

TheParagonin general,however,showsmodestscalability.Communicationcost,speciallyhigh

latency,wasobservedfrom the measurementsto be the limiting factor still. This canbe also

noted from figures 5 and 6. With the increasein communicationsrequirements,due to the

increasein the levels,of decomposition,thespeedupcurvecontinuesto drop,with theworstcase

observedat4 levels.

Paragon for F = 4 and L=2

r

Sl raightforward

Snake

| | / i
10 20 30 40

Processors

Figure 6

Paragon Performance for Filter Size 4 and 2 levels of Decomposition
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Paragon Performance for Filter Size 2 and 4 levels of Decomposition

5.2 Cray T3D Scalability Measurements

Figures 8 and 9 present the T3D measurements. The Cray, in spite of using the straight-

forward data distribution, has shown much better scalability. This has been particularly due to

the interconnection network, which is distinguished with its relatively larger degree (degree of 6

in three dimensions) and its very high bandwidth and small latency, when compared to the rest of

the used architectures. This is particularly clear from the almost identical scalability results for

the Cray in spite of the increase in communications demands.
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T3D Performance for Filter Size 4 and 2 levels of Decomposition
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T3D Performance for Filter Size 2 and 4 levels of Decomposition
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5.3 HP/Convex SPP-1000 Scalability Measurements

Figure 10 presents the scalability measurements for the HP/Convex SPP-1000 for a variety of

filters, and reveals important properties of this architecture, in response to the wavelet image

processing workload. In order to put these measurements in perspective, the ideal linear

scalability curve (with n processors producing n-fold speed) is plotted on the same axes as the

measured cases. The first case, F8/LI, corresponds to a filter of size 8 and one level of

decomposition. With one level of decomposition, no communication is necessary, since

processors need to exchange data only at the end of one decomposition level in preparation for

the next level. With no communication, the speed up curve is expected to be close to the ideal

case, but slightly worse, due to parallel overhead other than communication, e.g. redundancy

overhead. However, due to the improved caching and infrequent misses, as a result of

distributing the image data over multiple processors, a superlinear speed up is observed. Another

anomaly is observed for the other two cases. While the scalability is initially close to ideal, and

even better than the ideal in the case of F4/2, which requires less communication, the scalability

plunges dramatically when the number of processors exceeds eight. In fact, the best performance

for these two cases was measured when exactly 8 processors were used. This is due to the fact

that for up to 8 processors, the application is distributed among the processors of the same

hypernode, and thus is taking advantage of the high communications bandwidth of the 5x5 cross-

bar switch. As the number of processors increases beyond eight, additional hypernodes are used
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andinter-hypernodecommunicationsstartto takeplaceoverthe muchslowerscalablecoherent

interfacering.

i Scalability of the Convex SlaP
2O

F8/El

F4/L2 //

1=2/I-4 //

10

0 i

0 10
No. of Processors

I

20

Figure 10

HP/Convex SPP-IO00 Performance for Different Filter Sizes and levels of Decomposition

5.4 NASA/GSFC Hrothgar-Beowulf Scalability Measurements

With its I00 MHz Pentium processors and dual 100Mbps Eathernet, Hrothgar seems to have

an adequate balance of compute and communication power for the requirements of the wavelet

decomposition problem. This is clear from the near linear speedup obtained in figures 11 and 12.

An earlier Beowulf generation based on the regular 10 Mops Eathernet channels and Intel 80486

processors was also used to run the Wavelet decomposition task and have shown very poor
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scalability,dueto thevery low communicationbandwidth.Hrothgarrepresentsanimprovement,

over thatearlier system,by 3folds in processingand 10folds in communications,which helped

makingthecommunicationoverheadsmallfor waveletdecompositionand,hence,the improved

scalability.

J 12

10

0

0

Hrothgar for F = 4, L=2

; " _ " ; 1'0 1_
t No. of Pfocelsors

Figure 11

Hrothgar Performance for Filter Size 4 and 2 levels of Decomposition

5.5 Comparative Results

While scalability gives a valuable insight into how balanced and well suited the

architecture is for a given application as the number of processors grow, scalability relates the

performance of multiple processors of one parallel machine to the performance of one processor

from the same machine. Thus, scalability does not report the relative speeds across a number of

machines for a given applications. Therefore, the wall clock time to completion for the wavelet
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decompositionon the targetmachineshasbeenmeasuredin order to providea fair comparative

evaluationacrosstheusedmachines.

Hrothgar for F=2, L = 4

I • I • I ' ! ! I

2 4 6 8 10 12

No. of Processors

Figure 12

Hrothgar Performance for Filter Size 2 and 4 levels of Decomposition

Table 1 lists these wall clock time measurements in seconds. From the table, it is clear that,

for the machine sizes and configurations Used, the MasPar is still favorably performing. This is

consistent with SIMD machines that have been known to perform well in fine-grain image

processing app]ications. However, the Cray T3D results indicate that MIMD machines that have

been only promoted for their general ability can perform well in such fine-grain applications. In

fact, for larger image sizes when parallelization overhead is better amortized over more

computations, it would be possible for the T3D to do even better. Both the Cray T3D and the

MasPar, with the given configuration, are capable of processing 30 images or more per second.
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Thusfor real-timevideo, multimediaapplications,andscientific andmedicalapplicationshigh-

performancecomputing is quickly assertingits presence.Finally, in spiteof its comparatively

very low cost,theHrothgar/Beowulfclusterof PC's hasoutperformedboth theParagonandthe

SPP-1000.

Best WCT in seconds

for used systems

MasPar (16K)

Cray T3D

1 processor

16 processors

Paragon

1 processor

16 processors

Hrothgar

1 processor

16 processors

Filter Size 8 /

Levels Decomp. 1

.0169

.75

.05

4.23

.613

Filter Size 4 /

Levels Decomp. 2

.0138

.49

.03

3.45

.632

1.34

.14

1.07

.138

Filter Size 2 /

Levels Decomp. 4

.0123

.44

.0314

2.78

.662

.89

.12

CNX SPP

1 processor 2.28 2.293 2.3

16 processors .137 .3 (for 8 proc.) .32 (for 8 proc.)

DEC 5000 5.47 4.54 4.11

Comparative Wavelet Decomposition Performance Measurements

Table I

6. Conclusion

In this study, we have mapped the multi-resolution wavelet algorithm, developed by Mallat

[4], onto several high-performance parallel computers and applied it to remotely sensed data

from the NASA Landsat-Thematic Mapper. We have collected an extensive set of performance
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measurementsfor the underlying image processing application over an array of high-

performancecomputers.Both the MasParandtheT3D haveprovidedtwo ordersof magnitude

improvementover a workstation,for the specific hardwaredescribedhere, and can perform

waveletdecompositionfor videostreamsin real-time.TheIntel Paragonexhibitedoneorderof

magnitudeimprovementandrequiredknowledgeaboutthenetworkoperationandspecialeffort

to scalebeyondfour processors.This is greatly attributedto therelatively low communication

bandwidthandlatencywhencomparedwith theprocessingpower.The HP/ConvexSPP-1000

could not scalefor the used datasizesbeyond8 processorsdue to the excessiveoverhead

associated with communicating over the scalable coherent interface ring. When no

communicationswas required,the large cacheon the SPP-1000hasresulted in a superlinear

speedup.The performanceof the Cray T3D almostdid not changewhen the communication

requirementswere increased,exhibiting good scalability.Surprisingly, the Hrothgar/Beowulf

network of PC's hascomparedfavorably in timing with the SPP-1000and the Intel Paragon.

Such Beowulf architecture clearly comparesfavorably with all used massively parallel

architectureson performance/costbasis.As image sizesbecomelarge, MIMD machinesare

expectedto do at leastasgood asSIMD in suchtraditionally fine-grain applicationsas image

processing.This is dueto theexpectedamortizationof paralleloverheadwhenthe problemsize

increases,andwhichwould leadto operatingtheseMIMD structuresat a muchhigherefficiency

thanobservedwith 512x512images.Both typesof architectures,however,havedemonstrated
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their ability to meet the requirements posed by real-time video and NASA remote sensed

scientific databases.
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